Spieler
INT LînusINT Lînus#MOIN
PPicks | WWins | W%Winrate | KDAKills/Deaths/Assists | |
---|---|---|---|---|
![]() |
3 | 2 | 66.67% | 4.7 / 2.3 / 5.3 |
![]() |
3 | 1 | 33.33% | 4.3 / 4.3 / 3.7 |
![]() |
2 | 2 | 100% | 4.5 / 1 / 8.5 |
![]() |
2 | 1 | 50% | 2.5 / 3 / 3 |
![]() |
1 | 1 | 100% | 4 / 1 / 6 |
![]() |
1 | 1 | 100% | 3 / 0 / 3 |
INT HullihulliJrINT HullihulliJr#INT
PPicks | WWins | W%Winrate | KDAKills/Deaths/Assists | |
---|---|---|---|---|
![]() |
5 | 3 | 60% | 4.6 / 5 / 6.2 |
![]() |
4 | 3 | 75% | 5.3 / 3 / 7.8 |
![]() |
3 | 1 | 33.33% | 3 / 5 / 6.3 |
![]() |
2 | 1 | 50% | 9.5 / 3.5 / 6.5 |
![]() |
1 | 1 | 100% | 9 / 2 / 9 |
![]() |
1 | 1 | 100% | 3 / 4 / 19 |
![]() |
1 | 0 | 0% | 5 / 8 / 1 |
INT StunINT Stun#INT
PPicks | WWins | W%Winrate | KDAKills/Deaths/Assists | |
---|---|---|---|---|
![]() |
6 | 5 | 83.33% | 2.7 / 3.8 / 10 |
![]() |
6 | 4 | 66.67% | 4.8 / 2.5 / 4.8 |
![]() |
3 | 1 | 33.33% | 4.7 / 4 / 4.7 |
![]() |
2 | 1 | 50% | 3.5 / 4 / 2.5 |
![]() |
1 | 1 | 100% | 12 / 0 / 4 |
![]() |
1 | 1 | 100% | 3 / 3 / 7 |
![]() |
1 | 0 | 0% | 2 / 6 / 2 |
INT AsolstanINT Asolstan#INT
PPicks | WWins | W%Winrate | KDAKills/Deaths/Assists | |
---|---|---|---|---|
![]() |
9 | 6 | 66.67% | 6 / 3.4 / 8 |
![]() |
4 | 3 | 75% | 8.3 / 3.3 / 6.3 |
![]() |
4 | 2 | 50% | 9.8 / 6.8 / 6.5 |
![]() |
1 | 1 | 100% | 13 / 2 / 4 |
![]() |
1 | 1 | 100% | 9 / 3 / 8 |
![]() |
1 | 0 | 0% | 2 / 5 / 2 |
KarlHWeißmannKarlHWeißmann#EUW
PPicks | WWins | W%Winrate | KDAKills/Deaths/Assists | |
---|---|---|---|---|
![]() |
4 | 3 | 75% | 0 / 2 / 16.3 |
![]() |
3 | 2 | 66.67% | 3.3 / 2.3 / 14.3 |
![]() |
2 | 2 | 100% | 2.5 / 1.5 / 14 |
![]() |
2 | 1 | 50% | 1.5 / 6 / 14 |
![]() |
2 | 1 | 50% | 1.5 / 6 / 6.5 |
![]() |
1 | 1 | 100% | 3 / 6 / 19 |
![]() |
1 | 1 | 100% | 3 / 6 / 11 |
![]() |
1 | 1 | 100% | 2 / 8 / 14 |
![]() |
1 | 0 | 0% | 1 / 5 / 16 |
Championstatistiken
Peigene Picks | P(g)gegnerische Picks | Beigene Bans | B(g)gegnerische Bans | W%eigene Winrate | PB%Gesamte Pick/Banrate | |
---|---|---|---|---|---|---|
![]() |
9 | 2 | 0 | 1 | 66.67% (6) | 60% (12) |
![]() |
6 | 2 | 1 | 2 | 83.33% (5) | 55% (11) |
![]() |
6 | 0 | 0 | 13 | 66.67% (4) | 95% (19) |
![]() |
5 | 3 | 2 | 2 | 80% (4) | 60% (12) |
![]() |
5 | 0 | 1 | 1 | 60% (3) | 35% (7) |
![]() |
4 | 3 | 0 | 2 | 75% (3) | 45% (9) |
![]() |
4 | 0 | 0 | 2 | 75% (3) | 30% (6) |
![]() |
4 | 1 | 0 | 1 | 75% (3) | 30% (6) |
![]() |
4 | 0 | 0 | 12 | 50% (2) | 80% (16) |
![]() |
3 | 4 | 0 | 1 | 100% (3) | 40% (8) |
![]() |
3 | 0 | 0 | 1 | 66.67% (2) | 20% (4) |
![]() |
3 | 3 | 3 | 6 | 66.67% (2) | 75% (15) |
![]() |
3 | 1 | 1 | 1 | 33.33% (1) | 30% (6) |
![]() |
3 | 2 | 2 | 2 | 33.33% (1) | 45% (9) |
![]() |
3 | 0 | 2 | 0 | 33.33% (1) | 25% (5) |
![]() |
3 | 2 | 0 | 3 | 33.33% (1) | 40% (8) |
![]() |
2 | 1 | 0 | 0 | 100% (2) | 15% (3) |
![]() |
2 | 1 | 0 | 3 | 100% (2) | 30% (6) |
![]() |
2 | 0 | 0 | 10 | 50% (1) | 60% (12) |
![]() |
2 | 0 | 0 | 4 | 50% (1) | 30% (6) |
![]() |
2 | 1 | 0 | 0 | 50% (1) | 15% (3) |
![]() |
2 | 0 | 0 | 4 | 50% (1) | 30% (6) |
![]() |
2 | 0 | 0 | 2 | 50% (1) | 20% (4) |
![]() |
1 | 0 | 0 | 1 | 100% (1) | 10% (2) |
![]() |
1 | 1 | 0 | 5 | 100% (1) | 35% (7) |
![]() |
1 | 0 | 0 | 1 | 100% (1) | 10% (2) |
![]() |
1 | 1 | 2 | 1 | 100% (1) | 25% (5) |
![]() |
1 | 2 | 0 | 4 | 100% (1) | 35% (7) |
![]() |
1 | 1 | 0 | 3 | 100% (1) | 25% (5) |
![]() |
1 | 0 | 4 | 1 | 100% (1) | 30% (6) |
![]() |
1 | 1 | 0 | 0 | 100% (1) | 10% (2) |
![]() |
1 | 0 | 0 | 1 | 100% (1) | 10% (2) |
![]() |
1 | 0 | 2 | 0 | 100% (1) | 15% (3) |
![]() |
1 | 0 | 0 | 2 | 100% (1) | 15% (3) |
![]() |
1 | 2 | 5 | 0 | 100% (1) | 40% (8) |
![]() |
1 | 1 | 0 | 0 | 0% (0) | 10% (2) |
![]() |
1 | 0 | 0 | 1 | 0% (0) | 10% (2) |
![]() |
1 | 1 | 0 | 0 | 0% (0) | 10% (2) |
![]() |
1 | 1 | 6 | 0 | 0% (0) | 40% (8) |
![]() |
1 | 0 | 1 | 0 | 0% (0) | 10% (2) |
![]() |
1 | 2 | 0 | 0 | 0% (0) | 15% (3) |
![]() |
0 | 0 | 0 | 4 | - | 20% (4) |
![]() |
0 | 0 | 0 | 1 | - | 5% (1) |
![]() |
0 | 0 | 0 | 1 | - | 5% (1) |
![]() |
0 | 0 | 0 | 1 | - | 5% (1) |
![]() |
0 | 4 | 2 | 0 | - | 30% (6) |
![]() |
0 | 4 | 0 | 0 | - | 20% (4) |
![]() |
0 | 3 | 0 | 0 | - | 15% (3) |
![]() |
0 | 3 | 0 | 0 | - | 15% (3) |
![]() |
0 | 2 | 4 | 0 | - | 30% (6) |
![]() |
0 | 2 | 1 | 0 | - | 15% (3) |
![]() |
0 | 2 | 0 | 0 | - | 10% (2) |
![]() |
0 | 2 | 2 | 0 | - | 20% (4) |
![]() |
0 | 2 | 1 | 0 | - | 15% (3) |
![]() |
0 | 2 | 0 | 0 | - | 10% (2) |
![]() |
0 | 2 | 0 | 0 | - | 10% (2) |
![]() |
0 | 2 | 0 | 0 | - | 10% (2) |
![]() |
0 | 2 | 5 | 0 | - | 35% (7) |
![]() |
0 | 2 | 4 | 0 | - | 30% (6) |
![]() |
0 | 2 | 2 | 0 | - | 20% (4) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 2 | 0 | - | 15% (3) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 2 | 0 | - | 15% (3) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 4 | 0 | - | 25% (5) |
![]() |
0 | 1 | 1 | 0 | - | 10% (2) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 1 | 0 | - | 10% (2) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 1 | 0 | - | 10% (2) |
![]() |
0 | 1 | 3 | 0 | - | 20% (4) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 0 | 0 | - | 5% (1) |
![]() |
0 | 1 | 3 | 0 | - | 20% (4) |
![]() |
0 | 0 | 5 | 0 | - | 25% (5) |
![]() |
0 | 0 | 3 | 0 | - | 15% (3) |
![]() |
0 | 0 | 3 | 0 | - | 15% (3) |
![]() |
0 | 0 | 3 | 0 | - | 15% (3) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 2 | 0 | - | 10% (2) |
![]() |
0 | 0 | 1 | 0 | - | 5% (1) |
![]() |
0 | 0 | 1 | 0 | - | 5% (1) |